
26 July/Aug 2013

3.	 Because all database updates are captured in the audit trail,
the disk process can defer updating the actual data files
without loss of data even in case of a system failure. This is
the most reliable way to eliminate physical I/O operations
without risk.

Other advantages of using TMF auditing include
1.	 Reliable online backup and recovery of audited data, using

standard TMF roll forward recovery of a damaged file or
volume. Online backups of unaudited files that are being
updated are worse than useless because you have no idea if
they can be used in event of a failure.

2.	 Transaction backout keeps a database consistent if
applications are properly programmed to invoke TMF
transactions at business transaction boundaries.

The primary disadvantage of TMF auditing is the requirement
that all programs that update the database must be programmed to
make calls to BEGINTRANSACTION and ENDTRANSACTION.
For complex applications, especially those designed without TMF
in mind, adding transaction calls can be difficult to do. But, as you
might expect, there is a solution to this problem: AutoTMF.

AutoTMF
HP NonStop™ AutoTMF automatically provides TMF

transactions when required, but without requiring any change to
the application code or logic. It is currently in use in hundreds of
customer applications, many of which are running Base24. Some
of these customers adopted AutoTMF to support TMF-based
replication but many of them are using AutoTMF solely to improve
performance.

AutoTMF uses an interception library, but with an important
difference: if you forget to attach AutoTMF to a program, that
program will fail when it tries to update an audited database.
Any mistakes will be quickly found and corrected without losing
updates to the backup database.

In terms of performance, online backup and recovery, and
capturing database updates, AutoTMF works just as effectively and
efficiently as explicit use of TMF. But, AutoTMF does not know the
boundaries of a business transaction, so it never uses transaction
backout. Thus, it will behave the same as the original application
program.

Finally, AutoTMF is ideal for converting a large collection of
non-TMF-aware programs to use transactions because it allows
incremental reprogramming of the key database access programs
without requiring all to be changed simultaneously.

TMF Performance
A common reason for not adopting TMF is the fear of taking

a performance hit. TMF must manage transactions generated
on many cpus, implement two-phase commit, and send all the
audit from many disk processes to the audit trail disk. It would

Best Practices: Using TMF to Implement Business
Continuity/Disaster Recovery
Richard Carr
Carr Scott Software Inc.

Introduction
One of the common requirements of a Business Continuity/

Disaster Recovery (BC/DR) strategy on NonStop systems is to
quickly provide the production database on a backup system. To
implement that strategy, one must chose and deploy a database
replication solution, which may or may not be based on TMF
auditing. This article shows how that choice may affect overall
system performance.

Disaster Recovery Options
Although some customers may be able to implement a BC/DR

strategy using BACKUP and RESTORE, those with the highest
availability requirements will seek a method that maintains a
near-real-time mirror of the database on a remote backup system.
Thus, there are at least five companies, including HP, that provide
products to replicate a NonStop database for BC/DR.

When choosing such a product, one of the fundamental options
is whether to base replication on capturing database updates by
interception or by TMF auditing the database.

Interception
Interception requires attaching a user library to every

program that might update the database. The library receives
all calls to database update procedures, such as WRITE(X),
WRITEUPDATE(X), CONTROL, etc., and then performs
two I/O operations for each database update: one to update the
actual database and one to write a description of the update to a
transaction log.

The advantage of interception is that it works for an unaudited
database. Base24, the most widespread application on the NonStop
platform, uses an unaudited database. BC/DR is a high priority for
many of those customers.

The primary disadvantages of interception are (1) the extra
I/O operations required in each application process, and (2) the
possibility of error, in ensuring every program is always configured
with the interception library. If a new version of a program does not
have the interception library, it will update the primary database
but not the backup database, and you may never know that
happened.

TMF Auditing
HP Nonstop™ Transaction Monitoring Facility (TMF) has been

a fundamental part of the NonStop since 1980, so the reader is
assumed to have basic knowledge of this critical subsystem. The key
features of TMF that are important to this discussion are:

1.	 It is impossible to update an audited file unless TMF writes
an audit trail record describing that update.

2.	 TMF auditing is implemented in the disk process and
provides an extremely efficient method to capture all
database updates.

www.connect-community.org 27

(2)	 Transaction Log File (TLF) – an Entry-sequenced file
with four alternate keys. Record length is 998 bytes. Each alternate
key file had two partitions.

Care was taken to provide for parallelism when accessing the
database. Each file partition was placed on a separate physical disk
and disk activity was evenly distributed across all partitions. Very
large disk caches were configured.

The emulation program performed a sequence of database
operations to authorize a credit card. There is a fixed sequence
of operations to perform each authorization. These operations
include:

(1)Receiving an authorization request from a “terminal”.
(2)Reading (via an alternate key) and locking the terminal

record in the TDF.
(3)Sending a message to an authorization server. This does not

require a database I/O.
(4)Updating the TDF record.
(5)Writing a record to the transaction log TLF.
(6)Replying to the requester.
This authorization transaction was the most common sequence

of I/O operations, as determined by tracing an actual production
application.

Testing Protocol
Each server process is configured to perform a fixed number of

transactions per second. Increasing numbers of server processes
were run until the system was saturated and a maximum
transaction rate was achieved. The “load” is the number of
transactions that the application attempts to process.

In each test run, the database and servers were configured to use
one of the following setups:

•	 UNAUDITED – No files were either audited or buffered.
No TMF transactions were created.

•	 BUFFERED – Files were buffered. No TMF transactions
were created.

•	 NAINSERT – Files were buffered and enabled to use the
NONAUDITEDINSERT option . No TMF transactions
were created.

•	 AUDITED – Files were audited. Program performed one
TMF transaction for each business transaction.

•	 AUTOTMF – Files were audited. Program did not perform
TMF transactions. AutoTMF created one automatic TMF
transaction for each business transaction.

Each program reported its transaction rate and average response
time. Response time is the wall-clock time from after receiving
the authorization request to after sending the reply. The results
from each program was collected and collated to produce the total
transaction rate and overall mean response time.

Test Results
The following charts show the results of 85 separate test runs,

consisting of 17 different loads and the 5 different database/
application configurations.

The first chart shows the growth of the completed transaction
rate as the load is increased. The transaction rate of an unaudited
database is severely limited by the physical I/O required for

seem impossible to do all that work and still have acceptable
performance.

But, it is well known that using TMF almost always improves
performance. There are four primary reasons for this:

•	 TMF overhead is minimal. Implemented as part of
the NonStop OS kernel and disk process, transaction
processing requires a low level of resources.

•	 Audit records sent from the database disk process to
the audit trail disk process are blocked together, using a
technique called boxcarring. A few messages can support a
large number of transactions.

•	 Audit trail writes are also boxcarred. Audit for many
transactions from many disks is collected and written to the
end of the audit trail with a single I/O.

•	 Most importantly, the database disk processes can eliminate
physical I/O operations if updates are audited. It can do
this with no possibility of data loss. If a system fails, “lost”
updates are reapplied from the audit trail.

TMF performs best if it has many parallel processes generating
transactions. For a batch program, however, it is best to perform
many updates in each transaction.

Since there are still skeptics about TMF performance, the
performance study in the next section attempts to quantify these
claims.

Performance Study
The sole purpose of this study is to demonstrate the improved

performance of a TMF-audited application when performing
typical business operations.

This study emulates a system performing a fundamental
operation of a POS/ATM application: the credit authorization. In
the online environment, it is one of the most common operations.
A real application would perform other types of operations to deal
with exceptional cases, but the I/O of these operations is essentially
similar.

The study is not intended to predict the transaction rates of any
actual application. Our goal was only to perform the same types
of database I/Os that predominate in an actual application, and
measure the relative improvement of using TMF auditing.

The Test Environment
The test system was an NB50000c (NSE-M) system with four

dual-core Itanium cpus and sufficient disk storage and memory.
The operating system version was J06.15.00. TMF was configured
with a single master audit trail.

Application Emulation
A simple transaction generator program emulates the POS

authorization by performing I/O to a representative database.
Each process attempts to create a specific workload and increasing
numbers of the processes are run to create an increasing workload.

The representative database consisted of two files:
(1)	 Terminal Definition File (TDF) – a Relative file with two

alternate keys. The file had four partitions. Record length is 4072
bytes. The test file contained 10,000 devices. The TDF is accessed
via an alternate key.

28 Sept/Oct 2013

each transaction. Although the database was partitioned, the
maximum transaction rate was about 150 TPS for unaudited
access.

Buffering the database greatly increases the transaction rate to
about 630 TPS, but at some small risk of massive data loss in case
of a system failure. NAINSERT further improves performance to
950 TPS. NAINSERT streamlines inserts to the TLF, but doesn’t
significantly improve inserts to the alternate key files.

Maximum performance (2450 TPS) and maximum data
integrity is achieved with the use of TMF transactions and an
audited database. With auxiliary audit trails, even higher levels
can be achieved.

The second chart shows the effect that a high transaction rate
will have on the end user of the system. As more and more load
is placed on the system, users will have to wait longer and longer.
This is particularly dramatic for the unaudited database.

www.connect-community.org 29

Richard Carr is a co-founder and partner of Carr Scott Software Inc and
designed and implemented Escort SQL, HP Nonstop AutoTMF, and HP
NonStop SDR.

Prior to 1995, he was a Technical Director for Tandem Computers where he
worked for 15 years in Guardian kernel development, the High Performance
Research Center, and Tandem Labs. He designed and/or implemented
many products, including the NSK memory manager, parallel processor
load, Global Update Protocol, expedited message system, DSAP/DCOM,
Subsystem Programmable Interface (SPI), and performance features of
Remote Database Facility (RDF).

His degrees include a Ph.D. in Computer Science from Stanford University
(1981) and a B.A. in Mathematics from Georgetown University (1968). He
holds four patents for innovations in NonStop software products, including
the first software-only patent ever awarded for NonStop.

Configuring BUFFERED and NAINSERT dramatically decrease
the degradation of response time with increasing load, but the use
of audited files provides the fastest response time.

Much time was spent studying the BUFFERED and NAINSERT
measurements in an attempt to eliminate any bottlenecks and
improve performance. But, the fact remains that, even for buffered
files with large caches, DP2 must perform physical I/O to maintain
a consistent file structure. No one wants to have the “broken” files
that characterized the days of DP1.

NAINSERT showed a marked improvement over BUFFERED,
by reducing the cost of inserts to the Entry-sequenced TLF. But,
the bottleneck simply moved to the inserts to alternate key files. If
one eliminated all the alternate key files on the TLF, the NAINSERT
results would have been slightly better than AUDITED; both can
achieve more than 3000 TPS with response times less than 40 ms.
But, a survey of some major Base24 installations indicated that the
alternate key files are necessary for application functionality.

Benchmark Considerations
In benchmarks and other performance studies it is easy to

overlook extraneous factors (such as page-faulting or small cache
sizes) that lead to false conclusions. A diligent attempt has been
made to model and measure the authorization transaction without
such factors becoming significant.

Measure performance data for the test runs (available from the
author) was analyzed for problems such as excessive CPU busy,
page faulting, lock contention and excessive disk I/O. No such
problems were found.

With a lot of effort to improve the BUFFERED and NAINSERT
results (through partitioning and adjusting cache sizes), the
maximum transaction rate was increased from about 550 TPS to
950 TPS. The AUDITED rate of 2400 TPS was achieved on the first
run with no tuning whatsoever.

Note that this study did not include any use of interception to
collect updates for replication of unaudited data, so the impact
on performance would need to be included in any consideration
for BC/DR use. With audited files, the updates are already being
collected by TMF and can be readily used for reliable database
replication.

Conclusion
For real-time replication of a database to a remote backup

system, having a TMF audited database not only offers significant
operational, reliability, and integrity advantages, it also improves
overall system performance.

i NONAUDITEDINSERT is a special DP2 setting that improves performance when writing to an entry-sequenced file that is also buffered. Like buffered, updates are cached in memory
and may be lost if a system failure occurs.

